
Math 821 Lecture 6
Ross Churchley January 31

Stirling’s approximation

You’ve probably seen Stirling’s approximation at some point in your edu-
cation, but youmay not have seen (or remember) the proof. For the first
part of today, we’ll prove Stirling’s formula1 so we can do some asymp- 1 well, we’ll prove it up to the constant

factor
√
2π. That part isn’t so interesting

to us right now anyways.
totics in the second part.

Proposition (Stirling’s formula). As n→ ∞,

n! ≈
√
2πn

(n
e

)n
Proof (mostly). First notice that the factorial/exponential part just comes
from an integral estimate. How? Notice that log n! = log 1+ log 2+ · · ·+
log n and∫ n−1

0
log t dt ≤ log 1+ log 2+ · · ·+ log(n− 1) ≤

∫ n

1
log t dt

The antiderivative of log is x log x − x, so this tells us that

(n− 1) log(n− 1)− (n− 1)− lim
ε→0

(ε log ε− ε)

≤ log(n− 1)!
≤ n log n− n− (log 1− 1),

or in other words, that

(n− 1) log(n− 1)− (n− 1) ≤ log(n− 1)! ≤ n log n− n+ 1.

If we take the exp of everything in the above inequalities, we get

(n− 1)n−1
en−1

≤ (n− 1)! ≤ e · n
n

en

so we have the exponential growth rate correct.
Next we need to look at the lower order factor(s). Let

dn = log n!− ((n+ 1/2) log n− n) ;

the thing in the brackets is just the log of
√
n(n/e)n. We would like to show

that dn approaches a constant c, as that would show that n! and
√
n(n/e)n

asymptotically di�er only by that constant factor.
Let’s simplify dn − dn+1

− log(n+ 1)− (n+ 1/2) log n+ n+ (n+ 1+ 1/2) log(n+ 1)− (n+ 1)

= (n+ 1/2) log
(
n+ 1
n

)
− 1,
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then re-complicate it with(
n+ 1
n

)
=

(
1+ 1

2n+1

1− 1
2n+1

)
so we can use the following (less common) Taylor expansion of log:

1
2
log
(
1+ t
1− t

)
= t+

1
3
t3 +

1
5
t5 + · · · .

This gives

dn − dn+1 =
(
2n+ 1
2

)
log

(
1+ 1

2n+1

1− 1
2n+1

)
− 1

= 1+
1

3(2n+ 1)2
+

1
5(2n+ 1)4

+ · · ·

≤ 1
3

(
1

(2n+ 1)2
) +

1
(2n+ 1)4

+ · · ·
)

=
1
3

( 1
2n+1

)2
1−

( 1
2n+1

)2
=
1
3

1
(2n+ 1)2 − 1

=
1
3

1
4n2 + 4n

=
1
12

1
n(n+ 1)

.

We conclude that {dn} is decreasing, but {dn − 1
12n} is increasing.

It follows that both sequences converge to the same (finite) limit c, and
hence

n! ≈ ec
√
n
(n
e

)n
,

which is what we set out to prove2. 2 There’s a few ways to properly finish this
and get the constant ec =

√
2π. One way

is through Wallace’s product formula

π

2
=

∞

∏
n=1

(2n)(2n)
(2n− 1)(2n+ 1)

.

We’ve spent long enough on this digression—you probably didn’t sign
up for combinatorics to learn analysis! So let’s move on to some rooted
trees.

Pólya’s analysis of rooted trees

We’ve studied a few di�erent combinatorial constructions so far. Quite
a few of them have similar asymptotics3; in this section, we’ll try to find 3 so many that the asymptotic forms are

sometimes called “universal laws”them.
Consider the combinatorial class of rooted non-planar unlabelled trees

T = Z × MSET(T ). This has generating function

T(x) = x exp

(
∞

∑
n=1

T(xn)
n

)
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which determines T(x) recursively. We’ll apply some analysis to this gener-
ating function to get some asymptotic information about the coe�icients
tn. But this means we’ll actually have to care about T(x) as a function—
not just as a formal power series—and worry about stu� like the radius of
convergence.
Combinatorially, we know that there’s at least one rooted tree of every

size4. So tn ≥ 1 for all n ≥ 1, and the radius of convergence ρ of T(x) is at 4 except size zero, but the first term doesn’t
a�ect the radius of convergencemost 1. Also,

T(x) ≥ x
T(x)2

2
(1)

since all coe�icients tn are positive5, and 1 ≥ xT(x)/2. As x approaches ρ 5 the right hand side comes from the
second term of the Taylor expansion of
exp, not from the interior sumwhich has
the power n on the inside.

from the le�, we get

1 ≥ ρ
limx→ρ− T(x)

2
,

so T(ρ) < ∞.
But wait—what if ρ = 0? This would be really bad if we’re trying to

apply analytic techniques to T(x) around x = 0. In the next step, we show
that this doesn’t happen. First, some definitions:

Definition. Let A(x) = ∑∞
n=0 anxn and B(x) = ∑n=0 bnxn. We write

A(x) E B(x)

if an ≤ bn for all n ≥ 0.

Definition. If there exists a R > 0 such that A(x) E ∑∞
j=0 R

jxj, we say that
A(x) is bounded.

Definition. LetΦ be an admissible combinatorial construction andΘ the
associated operator on power series. We sayΘ is bounded if there exists a
constant R > 0 such that for all A(X) ∈ xR≥0[[x]],

Θ(A(x) E
∞

∑
j=0

Rj(x + A(x))j

Observe that the operator on power series associated with MSET is
bounded in this sense. Why? The generating function for MSET is

exp

(
∞

∑
n=1

A(xn)
n

)
E

1
1− A(x) =

∞

∑
j=0

A(x)j E
∞

∑
j=0

(x + A(x))j

where the firstE inequality comes from the combinatorial fact that
|(MSET(A))n| ≤ |(SEQ(A))n|. This satisfies the above definition with
R = 1.

Lemma. LetΘ be a bounded power series operator and suppose [xn]Θ(A(x))
depends only on [xj]A(x) for j < n. Let T(x) be the unique series defined by
T(x) = Θ(T(x)). Then T(x) has positive radius of convergence.
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Proof. We know that for all A(x),

Θ(A(x)) E
∞

∑
j=0

Rj(x + A(x))j

so

[xn]Θ(A(x)) ≤ [xn]
∞

∑
j=0

Rj(x + A(x))j.

By assumption, the le� hand side does not depend on [xn]A(x)—it only
depends on earlier terms of A(x)—so the inequality remains true even if we
set [xn]A(x) = 0. So

[xn]Θ(A(x)) ≤ [xn]
∞

∑
j=0

Rj(x + A(x))j − R[xn]A(x)

Θ(A(x)) E
∞

∑
j=0

Rj(x + A(x))j − RA(x).

By this, the solution to T(x) = Θ(T(x)) is bounded by the solution to

(1+ R)S(x) =
∞

∑
j=0

Rj(x + S(x))j (2)

Since the right hand side is equal to 1
1−Rx−RS(x) , we can rewrite equation

(2) as
(1+ R)S(x)(1− Rx − RS(x)) = x + S(x)

which is quadratic in S(x). Checking the discriminant ((1+ R)(1− Rx)−
1)2 − 4x(1+ R)R at x = 0 and R2 > 0, we find that the solution S(x) exists
as an analytic function near 0. So S(x) has positive radius of convergence,
and hence so does T(x).

Corollary. If T is the class of rooted trees, then T(x) has radius of conver-
gence ρwith 0 < ρ < 1 and T(ρ) < ∞.

All the above was just fussing around—mere prerequisites for the real
trick which is to come. Here is the real meat of this lecture: define

E(x, y) = xey exp

(
∞

∑
n=2

T(xn)
n

)

by taking the leading term6 out of T(x) such that T(x) = E(x, T(x)). Since 6 referring to the expansion

T(x) = x exp

(
∞

∑
n=1

T(xn)
n

)
from equation (1)

ρ is smaller than 1, ρ > ρ2 > ρ3 > · · · and thus we can choose ε > 0 such
that

exp

(
∞

∑
n=2

T((ρ + ε)n)

n

)
< ∞

so E(ρ + ε, T(ρ) + ε) exists and E(x, y) is analytic in a neighbourhood of
(ρ, T(ρ)). This is the key: it lets us analyse these formulas more easily.
Here’s a theoremwe’ll prove next time to do this analysis.



MATH 821 LECTURE 6 5

Theorem. Suppose T(x) ∈ xR≥0[[x]] and E(x, y) ∈ R≥0[[x, y]]with

• E(0, 0) = 0

• E has a term of degree≥ 2 in y

• ∂
∂xE(x, y) 6= 0, and

• T(x) = E(x, T(x)).

Let ρ be the radius of convergence of T(x). Suppose that 0 < ρ < ∞, that
T(ρ) < ∞ and that there is some ε > 0 such that E(ρ + ε, T(ρ + ε)) exists.
Then there are functions A(x),B(x) analytic at 0 such that

T(x) = A(ρ− x) + B(ρ− x)
√

ρ− x

for |x| < ρ, x near ρ.

This theorem lets us describe T near the singularity (which is essentially
a square root singularity). As x → ρ, T(x) ≈ A(0) + B(0)

√
ρ− x and we

know

[xn]
√

ρ− x =
(
1/2
n

)
ρ
1/2−n(−1)n

≈ ρ
1
2−nn−

1
2−1 · c

=
1

ρn
n−3/2c′

So tn has an exponential part and a “lower order part” which is always to
the power of−3/2.
What remains to be done? We need a “transfer theorem" to show when

A(x) ≈ B(x), then an ≈ bn. We need to prove the above theorem, of
course, and then we need to build examples of families with our operators
for which this whole story holds. Next week, we’ll finish this.
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